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Abstract

In this supplementary document, we provide additional in-
formation about our constructed CoralMask dataset (Sec. I).
More qualitative and quantitative outputs are also included
(Sec. 2). We also provide the detailed implementations in
Sec. 3. Finally, we provide more discussions in Sec. 4.

1. CoralMask Dataset
1.1. Dataset Comparison

We first provide a comprehensive comparison between our
CoralMask dataset with existing underwater/marine datasets
proposed for underwater visual scene understanding in Ta-
ble 1. We summarize the differences between the existing
underwater and marine datasets and our CoralMask dataset
from different aspects: number of categories; number of
images; annotation type; whether the viewpoint of captured
images changes; the image diversity; whether the dataset con-
tains low visibility images; whether the images contain the
camouflaged objects; and the research purpose (task) of these

proposed datasets. Please note Eilat Fluorescence [4], Mo-
saics UCSD [8], CoralNet [3] and CoralVOS [23] datasets
are specially proposed for coral reef research. We argue
the existing coral reef datasets are mainly collected at some
specific angles (mostly bird-of-view) and essentially at the
same depth, making it difficult and limited for data collec-
tion. Such data collection requirements make the coral reef
research limited to a specific group of people. There are also
some challenging scenarios missing, such as low visibility,
background clutter, motion blur, occlusion between overlap-
ping objects, dynamic lighting, color distortion, irregular
boundaries of coral reefs, viewpoint variations, scenario
variation and a large range of image resolutions. These
motivate us to propose our Coral SCOP dataset, which con-
tains significant data diversity. We refer the readers to check
some demo images from our CoralMask in Figure 1 for more
details.

1.2. Dataset Details

The coral reef images of our CoralMask dataset contain
multiple data sources: the Internet (Flickr and Google);
the public data of CoralNet [3]; existing public underwa-

Table 1. A direct comparison between our CoralMask dataset with existing underwater/marine datasets. — indicates the number cannot be

reported.
Datasets ‘ Categories ‘ Images Annotation Viewpoint changes ‘ Diversity ‘ Low Visibility ‘ Camouflaged ‘ Task
SUIM [11] 8 1,500 Mask v Medium v X Underwater scene segmentation
MAS3K [16] 37 3,103 Mask X Medium X v Marine animal segmentation
Wildfish [21] 1,000 | 54,459 Category v High X X Fine-grained fish classification
Wildfish++ [22] 2,348 | 103,034 Category v High X X Fine-grained fish classification
USODI10K [10] - 10,255 Mask v High v v Underwater salient object detection
LaRS [24] 4 4,006 Mask X Medium X X Marine obstacle segmentation
WaterMask [17] 7 4,628 Mask v High v X Underwater instance segmentation
MarineDet [9] 821 22,679 BBOX v High v v Open-marine object detection
FishNet [13] 17,357 | 94,532 | Category/BBOX X High X X Fine-grained fish classification and detection
Eilat Fluorescence [4] - 142 Category X Low X X Dense coral segmentation
Mosaic UCSD [8] 34 4,193 Mask X Medium X X Dense coral segmentation
CoralNet [3] 191 | 416,512 Category X High X X Sparse point annotation
CoralVOS [23] — 60,456 Mask X Medium v X Dense coral video segmentation
CoralSCOP ‘ — | 41,297 Mask v High ‘ v ‘ v ‘ Dense coral segmentation
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Figure 1. The example images from our CoralMask dataset. The
collected coral reef images are from different environmental con-
ditions (e.g., weather, water turbidity, visibility, water depth and
seasons), demonstrating a significant image diversity.

ter datasets [2, 8]; underwater surveying data contributed
by coral biologists from various sites; and YouTube videos.
The coral reef images are collected from various sites world-
wide, with significant image diversity. The collected coral
reef images have a large diversity, with large appearance,
viewpoint and visibility variations. Handling complicated
object shapes and boundaries is challenging because coral
reef shapes can be very complex and vary greatly in size,
shape, and texture. Our CoralMask dataset contains 41,297
coral reef images with 330,144 coral masks. The minimum,
average, median and maximum number of coral masks for
each image are /, 8, 4 and 190, respectively. We provide
visualization of some example coral reef images (with large
illumination, visibility, and diversity variations) from our
CoralMask dataset in Figure 1.

1.3. Grouping Rules

All these images are labeled with dense pixel-level annota-
tions. When performing the coral reef labeling, the annota-
tors are asked to group the coral reefs with similar appear-
ances to the same coral mask while separating the coral reefs
with dissimilar appearances into different coral masks. In
this way, we could promote the ability of the trained founda-
tion model to yield the coral masks in a fine-grained manner
and thus the generated coral masks could serve for the down-
stream user-defined tuning. The bleached corals have also
been into consideration while the dead corals are ignored.
When the coral mask annotations have been finished, the
generated coral masks will be double-checked by two more
different annotators to ensure the generated coral masks are

accurate enough and remove the wrong coral masks.

2. Additional Results
2.1. Zero-shot Generalization Ability

We provide more qualitative coral segmentation results of
coral reef images from different sites to demonstrate the
strong zero-shot ability of our CoralSCOP in Figure 2. It
is worth noting that all the coral masks are generated au-
tomatically without any prompts. All the testing images
are downloaded from the Internet, with a significant im-
age diversity. Please note there are some coral reefs are
still missed by our CoralSCOP and our CoralSCOP also
yields some false positives. We also provide more qualitative
results of our CoralSCOP on the low visibility coral reef
images in Figure 3, demonstrating the strong robustness of
our CoralSCOP.

Comparison with SOTA. More qualitative comparisons
with existing state-of-the-art semantic segmentation algo-
rithms are provided in Figure 4. Both SAM and CoralSCOP
could separate coral reefs with dissimilar appearances to
different coral masks while other algorithms failed. We
also provide more qualitative coral segmentation results of
SAM and our CoralSCOP in Figure 5. As demonstrated,
SAM heavily suffers from the over-segmentation problem
and yields numerous false positives due to it cannot generate
masks with semantics. In contrast, our CoralSCOP could ef-
fectively reduce the false positives and has a stronger ability
to detect missed coral reefs by SAM.

2.2. Sparse-to-Dense

We provide a direct comparison between the generated coral
masks by PLAS [20], SAM [14] and our CoralSCOP in
Figure 6. The CPCe visualizations with sparse point anno-
tations are also provided for reference. As illustrated, our
CoralSCOP could generate more accurate and reliable coral
masks based on the given sparse point annotations. The
detailed and quantitative result comparisons of various al-
gorithms for sparse-to-dense conversion are illustrated in
Table 2. We report the mean average prediction error and
corresponding standard deviation of the three rounds of ex-
periments.

2.3. Benthic Coral Image Segmentation

The coral reef images with the benthic view are favored by
coral biologists since they can directly compute the coral
coverage from the labeled sparse points or the generated
dense masks. We provide more qualitative coral segmenta-
tion results of the coral reef images with the benthic view in
Figure 7. As reported, our CoralSCOP could also effectively
the corals from the benthic coral reef images, thus qualifying
the coral cover of different coral growth forms, genera, or
species. The users could directly re-define the label of the



Figure 2. The zero-shot generalization ability of CoralSCOP to coral reef images from various sites. The left side is the input image while
the right side illustrates the coral segmentation result of CoralSCOP.



Figure 3. Our CoralSCOP demonstrates strong robustness to the low visibility coral reef images. The left side is the input image while the
right side illustrates the coral segmentation result of our CoralSCOP.

Table 2. The prediction error under the original “sparse” (CPCe) setting and “dense” setting after sparse-to-dense conversion by SAM and
CoralSCOP. We repeat the experiments 3 times to obtain the mean values and standard deviations.

Method ‘ Setting ‘ Non-coral (61.43) ‘ Massive (22.51) ‘ Laminar (13.06) ‘ Branching (1.499) ‘ Faliaceous (0.9614) ‘ Encrusting (0.2788) ‘ Columnar (0.2616)

CPCe [15] 10.0110.2269 8.90310.1059 4.544 101415 0.67810.1804 0.223 10,0599 0.480+0.0756 0.16240.0817
PLAS [20] 10 points 9.886..0.5938 8.490+0.2171 4.48510.3556 0.675+0.2451 0.15340.0202 0.39710.1358 0.134.0.0932
SAM [14] P 16.1210.5343 10.69+0.0758 5.846.40.1779 0.309+0.1688 0.164 10,0888 0.24810.0252 0.13510.0896
CoralSCOP 10.56.0.7668 6.37110.1955 3.677+0.2736 0.28710.2615 0.034.0.0213 0.21110.0230 0.19810.0899
CPCe [15] 7.437 £0.7282 6.21840.4712 3.02140.2540 0.536.£0.2408 0.03940.0288 0.30810.0907 0.12910.0833
PLAS [20] 20 points 6.39110.5405 5.73610.2700 2.95210.2462 0.42110.2577 0.0500.0058 0.33810.0804 0.14110.0942
SAM [14] P 10.7140.3234 6.9431.0.3603 3.871+0.1936 0.2300.0779 0.24940.1666 0.256.40.0316 0.0550.0126
CoralSCOP 5.33410.0533 3.79140.1416 1.555.0.0856 0.119.0.0573 00490017 0.225.0.0344 0.14510.0930
CPCe [15] 4.4881.0.3205 3.569+0.2603 2.300+0.1556 0.38240.0135 0.086.£0.0442 0.217 1£0.0394 0.04110.0417
PLAS [20] 50 points 3.747 10.0866 3.17040.0152 1.67110.1763 0.17910.0219 0.06510.0177 0.19310.0308 0.021 100173
SAM [14] P 6.9881.0.4405 5.19440.3053 3.047 10,3406 0.15840.0367 0.1124.0.0402 0.54510.2232 0.11340.0428
CoralSCOP 2.83210.2615 2.6571.0.2408 1.396.10.2439 00420013 0022500193 0.154.0.0189 0.22140.0031
CPCe [15] 3.052.40.2466 2.648.£0.1399 1.34510.2275 0.175+0.0180 0.020+0.0086 0.15910.0204 0.03410.0128
PLAS [20] 100 points 2.300+0.0757 1.92140.0336 1.25310.2002 0.11510.0208 0.02410.0198 0.14510.0320 0.026..0.0165
SAM [14] P 7.43610.4764 5.80440.4052 3.37810.1325 0.33510.0492 0.18810.0538 1.25940.0447 0.09810.0234
CoralSCOP 2.014.0.4266 1.727 10.1306 117440 1168 0.056..0.0135 0.010.0.0028 0.145.0.1657 0.07040.0314

generated coral masks based on the required coral taxonomy
to yield a more hierarchical and comprehensive biological
report.

2.4. Ablation Studies

We provide a comprehensive analysis of the proposed
CoralSCOP and dissect the advantage of CoralSCOP over
the existing algorithms. We have included 1) SAM [14]
(inference only); 2) SAM? (fine-tuned on our CoralMask
dataset); 3) SAM-adapter [60] (fine-tuned on CoralMask
with adapter design [6] while keeping Enc(-) frozen);
4) CoralSCOP™ (training without the negative non-coral

masks); 5) CoralSCOP. All the algorithms have been con-
ducted with three different backbones: Vit-B, Vit-L and Vit-
H. Due to the constraint of computational resources, all the
algorithms have been optimized for one epoch on our Coral-
Mask dataset to guarantee a fair comparison. The detailed
and comprehensive results of ablation studies are reported
in Table 3. At the training procedure, the training prompt
contains / random point inside the labeled coral mask and
the bounding box of the labeled coral mask or negative non-
coral mask denoted as BBOX,,5x. We compute results under
three settings in Table 3. We could summarize such findings:

¢ 1) Directly fine-tuning SAM on CoralMask could promote
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Figure 4. The qualitative zero-shot coral segmentation results of various algorithms. Note both SAM and CoralSCOP could generate
multiple coral masks for further user-redefined. SAM still generates many false positives.

the ability of SAM to segment coral masks and a stronger
backbone could achieve a larger performance gain, espe-
cially under the “1 point + BBOX sk ®” setting.

¢ 2) We observed the model with backbone Vit-L achieved
the largest performance gain under the “Automatic¥” set-
ting. We attribute this phenomenon to the reason that it
requires more training time for the model with Vit-H back-
bone to convergence and the data scale of our CoralMask

dataset cannot fully unleash the power of a very big model.
The appropriate model size (Vit-L over Vit-B) will lead to
the best performance.

* 3) Fine-tuning Enc(-) together could result in better au-
tomatic coral segmentation performance by comparing
SAM?* and SAM-adapter under the settings of using all the
three network backbones. Especially, under the setting of
using a weak network backbone (Vit-B), the coral segmen-
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Figure 5. We provide direct comparisons between SAM and CoralSCOP. SAM still suffers from the over-segmentation problem and cannot

generate accurate and complete coral masks.

tation performance of SAM-adapter drops a lot compared
with SAM*.

* 4) By comparing the coral segmentation performance of
SAM? and our CoralSCOP, we observe that SAM?* are with
lower IoU scores while much higher MAE under almost
all settings, indicating many false positives. Thus, solely
fine-tuning SAM with coral masks from our CoralMask
dataset cannot alleviate the over-segmentation problem
well. The model has been taught what coral masks are,
but not optimized by what are not coral masks. The model
will tend to generate false positives on some unseen coral

reef images.

5) By comparing the coral segmentation performance of
CoralSCOP and CoralSCOP~, we observe that preserving
the negative non-coral masks could lead to observable IoU
and pixel accuracy improvements under the “Automatic"”
setting. With being optimized to recognize both coral
masks and non-coral masks, the model could reduce the
false positives. Meanwhile, the negative non-coral masks
could also promote to alleviate knowledge forgetting and
preserve the strong generalization ability, thus leading to a
stronger model to segment coral individuals from unseen



10
points

20
points

50
points

100

points

10
points

20
points

50
points

100
points

!

A
&)
A
&Y

)

Input CPCe PLAS SAM CoralSCOP GT Input CPCe PLAS SAM CoralSCOP GT

Figure 6. The sparse-to-dense conversion performance of various algorithms. The CPCe results with sparse point annotations are also
provided. Best viewed in color.

Table 3. The coral mask generation quality of various algorithms under comprehensive settings.

Automatic? 1 point® 1 point + BBOX a5k ®

Method Backbone | 1 1;0 Accuracy 1 MAE | ToU 4 Accuracy 1 MAE | ToU 4 Accuracy + MAE |
SAM [14] 23.61 44.18 0.3895 | 45.7640.1946 59.1440.0718  0.312240.0026 | 63.0340.1007 64.89+0.1415  0.1799+0.0006
SAM? 23.68 60.34 0.2551 | 32.1240.0812  53.77+0.3630 0.41484:0.0007 | 65.2140.1032 67.3440.1008 0.1676-0.0001
SAM»Adapter [6] Vit-B 8.821 32.34 0.3033 32.473:0‘4317 54.293:0.2397 0.37943:()‘0013 62.783:0‘()836 64.783:0‘0745 0.1891 4+0.0006
CoralSCOP~ 24.06 53.62 0.2915 | 33.5240.4328 48.5240.2461 0.381640.0019 | 65.6140.1007 67.2640.0087 0.1666+0.0006
CoralSCOP 26.45 56.45 0.2847 | 37.961 04315 4144402713 03219400023 | 66.78401303 69.0710.1028 0.156210.0003
SAM [14] 29.83 39.52 0.4623 | 41.36+0.3006 48.99+0.1087 0.457810.0031 | 5740401888 58.07+0.1954 0.294710.0010
SAM? 37.46 52.65 0.2614 | 447205179 56.9510.1279 0.326410.0020 | 68.0010.0065 70.16+0.0690 0.1470+0.0001
SAM—Adapter [6] Vit-L 34.38 46.19 0.3399 43-83i043061 56-55i041263 O~3290j:0,0026 67.343:0‘0673 69-47i0A0672 0-1525i0,0005
CoralSCOP~ 38.15 53.64 0.2601 44.873:[)‘5484 56.873:0.1325 O~3275j:(),()062 67.843:[)‘()785 69.123:[)‘()773 0.14753:0‘(]()[)3
CoralSCOP 46.46 75.62 0.1814 45.65i0_9050 58.80i0_1449 O.2991i0_0057 68.66i0_0754 70-79i0.0862 0.1408i0,0001
SAM [14] 31.16 38.05 0.5057 | 44.6710.2025 52.86+0.0007 0.379810.0000 | 72.80x0.0060 73.92+0.0541  0.1173+0.0002
SAM? 32.89 48.75 0.2900 | 48.02410.3630 58.2310.0830 0.320010.0035 | 75.1710.0624 77.2140.0234  0.099410 0001
SAM—Adapter [6] Vit-H 37.55 44.60 0.3736 46-92i0,4367 56-03i040897 043285i0,0025 75.14}0,1001 76.67i041023 0-1019i0.0004
CoralSCOP~ 37.13 58.42 0.2743 | 49.1540.0371  62.1140.0075 0.246240.0018 | 75.0940.0015 76.37+0.0801  0.1024.40.0004
CoralSCOP 37.42 68.82 0.2385 | 52.9240.1266 68.6240.0046 0.227640.0014 | 76.62+0.0616 79.15+0.0868 0.087310.0003

coral reef images. to further promote the coral segmentation performance.

2.5. Failure Cases ] .
3. Implementation Details
Our CoralSCOP is not without limitations. We found that

CoralSCOP only demonstrates limited automatic coral mask Pre-training procedure. During the pre-training procedure,
generation performance under crowded scenarios with occlu- 1.3 million masks (including 330,144 coral masks labeled
sions from dynamic objects when visibility is heavily limited. by coral biologists and 978,968 non-coral masks generated

We provide some failure cases of our CoralSCOP in Figure 8§ by SAM with Vit-H backbone) are utilized for training our
to inspire the whole coral reef research community on how CoralSCOP. We have optimized our CoraSCOP for 5 epochs
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Figure 7. Coral segmentation performance comparison between SAM and CoralSCOP on benthic coral reef images. Compared with SAM,
CoralSCOP could yield more accurate coral mask generation and reduce the false positives, thus leading to more reliable and accurate coral

coverage computation.

on 6 Tesla A100 GPUs and the batch size per GPU is set to
1. It requires 17.2, 20.7 and 25.8 GPU hours to optimize the
model with Vit-B, Vit-L and Vit-H backbones for only one
epoch. We optimize the parameters of the whole model dur-
ing the pre-training procedure to promote Enc(-) to extract
underwater visual features as demonstrated in Figure 9. The
composite prompts of point prompts (1, 2, 3 or 4 random

points inside the coral mask) and bounding box prompts are
utilized for training. The coarse mask prompts are not in-
volved in our experiments. The final loss function is the sum
of the classification loss L5, Dice loss, Focal loss (20 x)
and IoU loss. The latter three loss functions are the default
loss functions from the original SAM implementation.

Tuning procedure. We have designed two tuning proce-
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Figure 9. We provide the detailed overview frameworks of our
CoralSCOP under the pre-training procedure; user-defined tuning
procedure; and instruction-following tuning procedure.

dures: user-defined tuning and instruction-following tuning
as illustrated in Figure 9. Please note the heavy image en-
coder Enc(-) is kept frozen during the tuning procedures.

For the user-defined tuning, the coral masks with cor-
responding user-defined semantic annotations are fed into
CoralSCOP and we only optimize the MLP layer in Dec(-).
The users could self-design the label of generated coral
masks, ensuring the flexibility of the proposed CoralSCOP
for downstream coral reef analysis tasks.

For the instruction-following tuning, we borrow the lan-
guage decoder of CLIP [19] to generate the textual embed-
ding to empower CoralSCOP with the ability to understand
the user intents. The CLIP model has been optimized by a
large scale of image-text pairs and possesses a strong ability

to recognize and understand visual concepts, object shapes,
texture, and color, by associating visual images with corre-
sponding textual descriptions. Under this setting, we have
formulated 46,610 instruction-following pairs. 4,661 coral
images with 831 different coral species are crawled from
“Corals of the World” [7]. For coral mask generation, we
only label the corals belonging to the given coral species
when there are multiple coral species. The generated sen-
tences are paired with the labeled images to formulate textual
input and mask output pairs. There are 831 coral species
from 142 coral genera in total. Based on the coral species
names, we asked ChatGPT-3.5 [18] to generate 5 sentences
to describe the distinctive appearances of such coral species.
Then we pair such 5 sentences with the images from the
corresponding coral species. We adopt a simple prompt
template to formulate the final textual input: “this image
contains <coral species name>. <description generated by
ChatGPT-3.5>". For example “this image contains Acrop-
ora aspera; Acropora aspera is a branching-like coral and
it exhibits a vibrant and intricate structure”. The texts in
Italic will be replaced by other counterparts based on the
corresponding annotations.

We regard these formulated textual inputs and coral mask
outputs as positive pairs. We have also constructed the nega-
tive pairs to alleviate the hallucination, which means the gen-
erated coral mask does not match the given textual descrip-
tion. We randomly sample the textual descriptions from other
coral genera to formulate the negative pairs considering the
coral reef images from different coral genera share various
appearance representations. There are in total 46,610 (4,661
x 5 x 2) pairs for performing the instruction-following tun-
ing. The generated sentences are paired with the labeled
images to formulate textual input and mask output pairs. We
optimize the whole mask decoder under this setting.

Coral mask generation. We have designed three different
experimental settings for coral mask generation:

* “Automatic”” (no prompt is given). We follow the auto-

matic mask generation pipeline of SAM [14] and generate
the grid points (32 x 32) as point prompts for automatic
coral mask generation. The IoU threshold and stability
threshold are set to 0.82 to remove the automatically gen-
erated low-quality coral masks.

* “1 point prompt®” where one random point inside each
coral mask is given as point prompt. The point prompt is
randomly sampled from the whole coral reef mask.

* “l point prompt and BBOX nask™” (one random point in-
side the coral mask and BBOX of the coral mask are pro-
vided together as prompts). Besides, BBOX g indicates
that we utilize the width and height of the whole image as
the box prompt.



3.1. User-defined Tuning

In this section, we provide more details about the training
data involved in the user-defined tuning procedure.

Growth form. We adopt 500 coral reef images with 6 growth
form definitions:

* Massive corals grow in a spherical or hemispherical man-
ner, being solid. They are resistant to strong water currents
and are therefore commonly found in shallow and mid-
depth waters.

* Encrusting corals (also called crustose corals) are highly
tolerant of strong water currents. It is a growth form in
which the coral colony forms a thin, flat layer that adheres
tightly to the substrate.

* Foliaceous corals, such as the pagoda coral Tubinaria
mesenterina, are scroll-like in their appearance. They
form horizontally flattened, unifacial plates or lobes that
are attached to the reef substrate from the basal (ventral)
surface.

¢ Columnar corals, such as the catch bowl coral (Isopora
palifera), are pillar or finger-like corals that form. Colum-
nar corals do not have the secondary branches seen in the
branching coral growth type.

¢ Laminar corals have a flat upper surface which gives them
a table-like structure. A growth form in which the coral
colony forms flat, leaf-like structures that are attached to
the substrate.

* Branching corals, such as the thin birds-nest coral (Seri-
atopra hystrix), often found in areas of high wave action,
are antler or staghorn-like in their appearance.

All these coral reef images are with a benthic view.

Genus. There are 14 different coral genera involved in
genus-level coral recognition: Goniopora; Lithophyllon;
Plesiastrea; Pavona; Platygyra; Dipastrea; Echinophyllia;
Porites; Leptastrea; Favites; Cyphastrea; Coscinaraea;
Galaxea; Acropora. We have included 400 coral reef im-
ages for training and testing. Similarly, all the coral reef
images are with the benthic view. Genus-level coral recog-
nition is more challenging than recognizing coral growth
forms due to several factors: the finer distinctions required,
the diversity within genera, and the subtle morphological
differences among closely related genera. We provide the
example images with semantic masks (both growth form
and genus) in Figure 10 and Figure 11, respectively. In
Figure 11, to avoid potential misleading and provide better
readability, we only visualize one coral mask belonging to
the given coral genus for better illustration. The images are
captured from different islands and sites in Hong Kong with
significant diversity.

.Massive .Encrusting I:'Branching - Laminar D Faliaceous -Columnar

Figure 10. Example coral masks from the selected 6 growth forms.

Goniopora Lithophyllon

Plesiastrea Pavona

Dipastrea

¢4 _

Echiniophyllia Porites

CHDwEr

Leptastrea Favites

Cyphastrea Coscinaraea

Galaxea Acropora

Figure 11. Example coral masks from the selected 14 coral genera.

4. Discussions
4.1. Comparison with Existing Coral Analysis

There are two essential differences between Coral SCOP and
existing CPCe [15], ReefCloud [1], and CoralNet [3, 5]:



e Zero-shot generalization ability. For unseen coral im-
ages, CoralNet requires few-shot training samples (e.g., 20
labeled training samples) to perform model fine-tuning for
discriminating unseen coral images. The users are required
to do the sparse point based annotation based on random or
determined points (usually 100 points), making the model
segment unseen reef images. The proposed CoralSCOP
could perform zero-shot dense coral segmentation without
new training samples.

* Sparse vs. Dense. CoralSCOP yields dense pixel-wise
segmentation outputs, which could generate more pre-
cise and accurate coral statistics compared with the CPCe
and CoralNet. The sparse point based analysis may lead
to over/under estimations and cannot reveal coral bound-
aries. Furthermore, the dense segmentation could serve
for downstream 3D reconstruction and video monitoring.
CoralSCOP provides advanced analytical capabilities re-
quired for in-depth spatial analysis, statistical modeling,
and dense segmentation.

CoralNet (semi-automatic) and CPCe rely on manual identi-
fication and counting of coral points, which introduces a de-
gree of subjectivity and potential bias. More importantly, the
manual process can be time-consuming, especially when an-
alyzing large datasets or conducting repeated surveys. These
challenges require a coral foundation model with a stronger
capability for accurate and robust dense coral mask genera-
tion.

4.2. Potential Impact

Foundation model for coral reefs. CoralSCOP provides an
advanced interactive way for both amateurs and experts to
obtain required coral masks. CoralSCOP could unleash the
power of textual descriptions, providing an interactive way
to segment corals for both amateurs and experts. We envi-
sion our attempt as one of the first steps towards scientific
discovery in the coral reef domain assisted by the foundation
model. The pre-trained powerful coral foundation model
will further promote the understanding of coral reefs, and
pave the foundation for future discoveries.

Coral statistics. The coral biologists could utilize our
CoralSCOP to compute the coral statistics for the coral reef
images with the benthic view. The coral coverage statistics
could be the ratio of the generated dense coral masks over
the total image area. The abundance, coverage, composition,
and distribution of coral reefs play a very important role
in marine ecosystems. With the increasing attention and
more advanced equipment in collecting underwater survey-
ing/diving videos, huge coral reef images/videos have been
collected for different purposes. CoralSCOP contributes to-
wards efficient coral analysis for these collected coral reef
images/videos, yielding coral coverage, composition and
population estimation.

4.3. Application

3D coral reconstruction. The generated coral masks could
be used for promoting 3D coral scene understanding. We
perform structure-from-motion (Pix4D ! is used in our exper-
iments) for 3D reconstruction to better model the structure
and geometry information of coral colonies following the
experimental setup of [23]. The segmented coral masks are
utilized as binary masks to remove the noisy background and
preserve the 3D coral scene. The corresponding 3D recon-
struction results with the orthographic view are illustrated in
Figure 12. With the coral masks generated by CoralSCOP,
we could significantly reconstruct more accurate, robust,
and detailed coral colonies without geometry distortions.
Meanwhile, we could also remove the background of the 3D
model for better monitoring of the coral ecosystems.
Coral reef rendering. Similarly, the coral masks could also
promote the coral rendering performance [12]. We adopt
the official codes 2 of 3D Gaussian Splatting to perform
experiments and report the corresponding coral rendering
performance in Figure 13 under the two settings: without
and with the coral masks generated by CoralSCOP. With the
help of our CoralSCOP, we could obtain better rendering
results with better visual quality.

Bleached coral analysis. CoralSCOP could also be utilized

for bleached coral analysis, identifying the bleached coral

areas and computing the relative bleached coral ratio. We
first utilize CoralSCOP to automatically segment the coral
masks and then generate the bleached coral areas as follows:

* Coral mask generation. We utilize CoralSCOP to gen-
erate the coral mask and we only preserve these detected
coral areas considering that the bleached coral could only
come from these coral areas.

* RGB—Greyscale. We convert the RGB images to
greyscale images to alleviate the influence of color in-
tensity changes.

* Thresholding. We convert the grayscale images into
binary mask images based on a user-defined bleaching
threshold. The value over the given bleaching threshold is
set to 1 and otherwise 0.

Through these, we could roughly obtain the bleached coral
masks. We provide some results by using different values
of the bleaching threshold in Figure 14. The coral biolo-
gists could adjust the bleaching threshold according to their
requirements. The identification of bleached coral needs
calibration from coral biologists, so we leave it open for the
user to define the scale of bleaching.
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